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Mathematicians sometimes focus on how one kind of thing fits into an-
other kind of thing. Often, these things are geometric structures. Simple
geometric structures include points, line segments, triangular regions, and
higher-dimensional versions of these things called, in general, n-simplices.
So, a point is a 0-simplex, a line segment is a 1-simplex, and a triangular
region is a 2-simplex, and so on. “Fitting” one of these things into another
thing is called a map. Study of complicated geometrical things beginning by
“probing” them with how simpler things map into them is a large branch
of mathematics called algebraic topology. Maps of more complicated things
into large but simple things is another kind of mathematical study. The
simplest more complicated thing than a triangular region is a circle – it has
a “hole.” Study of maps of a circle into large flat spaces has also developed
into new areas of mathematics. For example, maps of a circle into three-
dimensional flat space (the space of “high school solid geometry”) is called
knot theory. Knot theory is much less about “probing” flat space than about
how shapes may be placed in space. Here are examples (see Appendix for
code):

In the last few decades knot theory has become entwined with modern
physics in surprising, complicated ways. Recently, for example, there is
a book called “Gauge Fields, Knots and Gravity” by John Baez and Javier
P. Muniain.

Maps of a circle into two-dimensional space is maybe not quite so intel-
lectually stimulating as knot theory, but has also been intensively studied
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by some mathematicians. It is easy enough to draw a continuous curve on
a piece of paper which is “simple” in the sense that it never crosses itself,
and is “closed” in the sense that its two ends come together. In this way
one maps a circle to a simple closed (continuous) curve in the plane. When
one makes a drawing or two like this, one sees that there are three very
different parts of the plane on which the figure is drawn. There is the inside,
the curve itself, and the outside. The curve is the common boundary of the
other two regions, the inside is obviously bounded, and the outside could go
on forever. It is possible to draw elaborate simple closed continuous curves
for which it is not so easy to tell which points of the plane are inside or out-
side. Nevertheless, the basic intuition was first formulated as a theorem and
proof by mathematician Camille Jordan around the turn of the Nineteenth
Century.

Theorem 1. For any simple closed continuous curve B in the plane P there
exists a partition P = E ∪B ∪ I such that E is an unbounded open set with
boundary B and I is a bounded open set with boundary B.

Although it is easy to state this topological assertion, it is not that easy
to prove. But, several proofs, deploying a variety of powerful mathematical
technologies, have been contrived: nonstandard analysis, [Nar71], [BC94];
algebraic topology, [Hat02] [Bro06]; computer proof, [Wie08]; discrete ge-
ometry, [Nef88], [DO11].

One question that came up was what conditions on a map of the circle
into the plane, that is defined by formulas such as polynomials, guarantee
that the closed curve is simple. J. W. Alexander, an early inventor of new
mathematical ideas about knot theory, published a paper with several suffi-
cient conditions [Ale15], one of which guided the Mathematica 9.0 code to
produce Fig. (1) (see Appendix for code).
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Figure 1: At the very top are buttons for adjusting the number of dots (in
this case, 256) for approximating the circle, and for adjusting the radius of
the circle (in this case, 1) . The circle is displayed at the left, along with five
dots that are the roots of a (complex) polynomial. The figure at the right
is the image of the map of the circle into the plane by the polynomial. At
the bottom is the fifth degree polynomial (see Appendix for code).

Non-simple maps of the circle into the plane, in other words, where the
closed curve may intersect itself, have also been studied. Indeed, the more
special case where a non-simple closed curve has no inflections – that is to
say, points where the curvature is zero – has been studied recently, see Fig.
(2) [OOU12].

The purpose of this note is to suggest that it may be interesting to study
the simple closed curves that do have inflections.

Two knots in three-dimensional space are considered equivalent if one
may be continuously deformed – no breaking or cutting – to perfectly overly
the other. The question of determining whether two knots are equivalent is
difficult, but one approach is to associate with each knot some mathematical
structure – usually algebraic structure, such as a polynomial, or a group – in
such a way that equivalent knots yield isomorphic structures. Therefore, if
the assigned structures of two knots are not isomorphic, then the knots are
not equivalent. Something that stays the same while something else varies
is called an invariant. So, for example, deforming a knot leaves certain poly-
nomials and certain groups invariant. The paper [OOU12] discloses a new
invariant – a non-negative even integer – of closed curves in the plane. In
both cases, knots in space and closed curves in the plane, the invariance is
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Figure 2: “Closed planar curves without inflections” [OOU12].

relative to continuous deformations.

Define a shape in the Euclidean plane to mean simple closed smooth
curve with at most double tangents, a finite number of inflection points,
and no two equal tangent lines at distinct points of inflection. By “smooth”
is meant that the curvature is everywhere defined (involves second deriva-
tives). By “inflection point” is meant a point where the curvature is equal
to zero. The simplest but trivial example of a shape is a circle in the plane.
Not so trivial is the “bean” shape obtained by smoothly indenting a circle,
see the bean shape produced by a polynomial in Fig. (1). The circle and
the bean are intuitively “qualitatively distinct.” This may be explained in
terms of “partial views.”

By the Jordan Curve Theorem the plane is partitioned into the exterior
of the shape, the shape, and the interior of the shape. A viewpoint is a point
in the (open) exterior of the shape. If a point source of light is located at
a viewpoint, then only a portion of the shape is illuminated. The illumi-
nated portion of the shape is called the partial view of the shape from the
viewpoint. All partial views of a circle are single connected subsets of the
circle. This is not true for the bean shape, nor for the infinite variety of
more complicated shapes. In general, a partial view is a finite union of one
or more connected subsets of the shape.
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I seek to capture algebraically the idea that two shapes are qualitatively
similar. If R and S are shapes and Alg(R), Alg(S) are algebraic struc-
tures constructed from R, S respectively, the idea is that R is qualitatively
similar to S only if Alg(R) and Alg(S) are isomorphic algebraic structures.
The basic problem with this idea is that in general, continuous deformation
of a shape will almost certainly change its qualitative shape. Witness the
polynomial reshaping of a circle shape into a bean shape in Fig. (1). So,
whatever may be the algebraic structure Alg(R), it will not be an invariant
of continuous deformation. But what sort of deformations should maintain
qualitative shape? Certainly, any kind of rigid transformation of the plane
– translation, rotation, reflection – would not change qualitative shape.

Computer vision researchers have investigated “characteristic views” of
an object (in three dimensional space) for the purpose of recognition. Practi-
cal applications include automatic inspection of parts, and motion planning
of robot appendages. In any case, alternative constructions of an “aspect
graph” data structure may proceed either via orthographic or perspective
projections [PD87]. Chapter 7 of my book, ”Microlects of Mental Models”
[Coo15] includes an algorithm for constructing a diagram in the category of
2-graphs from a shape in the plane. This is based on orthographic projec-
tions to planes infinitely removed all around the shape R, so may be denoted
Algorth(R).

Perspective projections correspond to partial views from nearby view-
points. Define two viewpoints x and y to be partial view equivalent and
write x ∼pers y provided there exists a continuous path from x to y such
that the number of connected components of partial views along the path is
invariant. Paths that cross certain lines in the plane automatically change
that number. For example, bitangent and inflection lines contain rays across
which that number changes. Not only that, a path that crosses such a ray
in one of its two directions will have the same count up to and including
viewpoints on the ray, and a different number arbitrarily close to the other
side of the ray.This implies there is a directed graph whose dots are par-
tial view equivalence classes of viewpoints, and whose arrows connect two
dots if there is exactly one increment in count of some path between the
viewpoints in the two equivalence classes. The category generated by this
directed graph may be denoted by Algpers(R). In summary, there are two
algebraic structures Algorth(R) and Algpers(R) associated with a shape R
in the plane, and both seem to be candidates for its “qualitative shape.”
Hence, I conjecture that the category Orth of all Algorth(R) is equivalent
to the category Pers of all Algpers(R). To make this conjecture precise, and
then to prove it, seem to me great challenges.
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Figure 3: (A) is the circular shape, which is qualitatively simpler than
the bean shape. (B) and (C) are quantitatively distinct from the circular
shape, but qualitatively similar to it. (D) The simplest non-circular shape,
the “bean.” (E) and (F) are qualitatively also bean shapes. But (G) is
qualitatively different from the bean shape.
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Appendix

Mathematica 9.0 code to generate twelve knot images:

tbl = Table[

Graphics3D[{Orange, Specularity[White, 70],

KnotData[{left[[i]], right[[i]]}, "ImageData"]}, Boxed -> True,

ViewPoint -> {0, 0.1, 5}],

{i, 1, 12}]

MatrixForm[Table[tbl[[i + j - 1]], {i, 1, 12, 4}, {j, 1, 4}]]

Mathematica 9.0 code to map the unit circle with a polyno-
mial to yield a “bean” shape:

StartCircle[pc_, r_] :=

Table[{r*Cos[i 2 \[Pi]/pc], r*Sin[i 2 \[Pi]/pc]}, {i, 1, pc}];

Nd = 256;

R = 1;

n1 = Nd;

r1 = 1;

rng = 2;

rootcount = 5;

Cmplx[{x_, y_}] := x + I*y;

Pnt[z_Complex] := {Re[z], Im[z]};

Plynml[p_] := Product[(z - Cmplx[p[[i]]]), {i, 1, Length[p]}];

(*pv=RandomReal[{-2,2},{rootcount,2}];*)

(*pv=Table[{1.8,i},{i,-2,2}];*)

pv = {{1.15, -1.8}, {1.15, -1.3}, {1.2, 0}, {1.15, 1.3}, {1.15, 1.8}};

DynamicModule[{},

btn = Grid[{

{Button["N up", n1 = 1 + Mod[n1, Nd]],

Button["N dn", n1 = Mod[n1 - 1, Nd, 1]],

Dynamic[n1],

Button["R up", R = Min[4, R + 0.1]],

Button["R dn", R = Max[0.1, R - 0.1]],

Dynamic[R]}

}];

lpn = LocatorPane[Dynamic[pv]

,

Grid[

{

{Show[Graphics[{

{White, Rectangle[{-rng, -rng}, {rng, rng}]},

Dynamic[Point[pv]],
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Dynamic[Point[StartCircle[n1, R]]]

}]

, Axes -> True, PlotRange -> {{-rng, rng}, {-rng, rng}},

ImageSize -> 400]

}

}

, Frame -> All]

, Appearance -> Table[Style["\[FilledCircle]", Black], {j, Nd}]

];

Grid[

{

{btn}

, {lpn}

, {Dynamic[

Module[{},

Show[Graphics[

Point[Pnt[#] & /@ ((Plynml[pv] /. z -> #) & /@ (Cmplx[#] & /@

StartCircle[n1, R]))]], Axes -> True,

PlotRange -> {{-60*rng, 60*rng}, {-60*rng, 60*rng}},

ImageSize -> 400]]

] // N}

, {Dynamic[MatrixForm[Expand[Chop[Plynml[pv]]] /. Plus -> List]]}

}

, Frame -> All]

]

Or, for a horizontal arrangement:

Grid[{{btn}, {Grid[{{lpn, Dynamic[

Module[{},

Show[Graphics[

Point[Pnt[#] & /@ ((Plynml[pv] /. z -> #) & /@ (Cmplx[#] & /@

StartCircle[n1, R]))]], Axes -> True,

PlotRange -> {{-60*rng, 60*rng}, {-60*rng, 60*rng}},

ImageSize -> 400]]

]}}, Frame -> All]}, {Dynamic[Expand[Chop[Plynml[pv]]]]}},

Frame -> All]
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